

Ilula Hospital Water System *Brant Axt, Matt Ries, Tyler Govek, Ben Gelhaus*

Table of Contents:

Contact Information:

University of Minnesota Students:

Tyler Govek *Mechanical Engineering Student* 920.883.2562 govek002@umn.edu

Ben Gelhaus *Chemical Engineering Student* 262.672.8669 gelha027@umn.edu

Matt Ries *Mechanical Engineering Student* 651.368.4242 riesx100@umn.edu

Brant Axt *Mechanical Engineering Student* 612.750.5330 axtxx019@umn.edu

Instructors:

Dr. Paul Strykowski *University of Minnesota* 612.626.2008 pstry@umn.edu

Dr. Ken Smith *3M Corporation* 651.336.7273 klsmith@mmm.com

Steve Grossheim *Hewlett-Packard* Phone: steven.grossheim@gmail.com

Saint Paul Partners: Pieter Simon 075.549.8610 071.549.8610 peter.simon29@gmail.com

Ilula Hospital Staff: Habukuk *Head of Iula Water System* 071.992.3209

Other:

Randy Hurley *Head of Nursing Students Phone: Email:*

Aderick *University of Iringa Student* 071.855.7365

Commented [1]: BEN: you got this stuff

Project Summary:

ABOUT THE HOSPITAL:

- Only hospital in 100-mile stretch
- Water system built in 1969
- Patients/Day: 100
- Total Staff: 90
- Doctors: 7
- Buildings requiring water: 28

CURRENT SITUATION:

- Many buildings do not receive water from the current system
- Water is contaminated
- Complex system with many valves and tanks
- Pipes are exposed to environment
- City does not supply water during the dry season

PROPOSAL:

- Create new piping system on top of the old
	- Allows for a non-interfering transition
	- Divided into 4 zones for anticipated multi-phase funding
- Decrease dependency on city water
- Clean piping near sinks
- Place 3 10kL SIM tanks on top of the preexisting concrete tank
- Add level switches to communicate between tanks and pump

PROJECT BUDGET:

*These numbers reflect a possible 20% contribution from the hospital

OUTCOME:

- Supply water to all buildings on the hospital campus
- Ensure clean and safe water for all hospital procedures

Commented [2]: BEN: you got this stuff

Background and History:

The Ilula Hospital is a government supported hospital located within the city of Ilula, in the Iringa region of the Kilolo district in Tanzania (see figure 1). The hospital is the only major medical center between the city of Iringa and Morogoro, roughly a 100 mile stretch of road. The city of Ilula has around 30,000 residents and the hospital treats about 100 patients per day, in addition to housing 7 doctors, 90 staff, and numerous visiting guess. The hospital is growing every year and is currently planning to add on a nursing school complete with dormitories and a kitchen for up to 64 students at a time. The complex currently consists of 27 buildings within a fenced off area from the rest of the city of Ilula.

Figure 1: Maps of Ilula, Tanzania

The existing water system, built in 1969, is extensive and complicated. As the hospital expanded over the years, piping was added on wherever it was needed. The basic structure of the water system consists of a 1 horse power pump, a large 32 kL concrete tank located at the highest point in the complex, and a series of branching pipes leading away from the tank toward the hospital buildings below. These pipes are made of both plastic and metal of various sizes.

In addition to the well water supplied by the 1 hp pump, several of the buildings rely on a combination of rainwater collection and water supplied by the city. This city/rainwater system consists of its own 1 hp pump, a small 5 kL water tower, and it serves several buildings on the west side of the complex. In the summer months, city water and rainwater is not available, and water is then trucked in to supply these buildings. A map of the complex with its current piping (city/rainwater=red, well water=green, any tank=blue) is shown in Figure 2.

Commented [3]: dont worry about formatting the photos for now, I can download it to word on Friday and tidy it all up then

Figure 2: Ilula hospital's existing water system

Challenges:

Currently, the hospital's water supply is experiencing a variety of challenges. Lack of water to key buildings, contaminated water, poor piping, an old tank, an unsophisticated control system, and an unreliable city source are amongst the most important to address. While not as high priority, there is some preference of soft water over hard water when cleaning surgical equipment because hard water can accelerate corrosion of the tools.

Many buildings are either not connected to the current system at all or they are offline due to poor water pressure or clogged piping. The General Ward, the Private Ward, Diagnosis, and the Consent to Treatment and Care (CTC) buildings are all connected to the water system but do not have water access. We believe this is due to clogged piping in many of the sinks. The sinks are currently built of thin metal piping that has been scaling over the years; this is a process that is accelerated by metal pipe over the smoother plastic compounds. This has led to a neglect of the system in these buildings, and implies that the internal plumbing has not been properly cleaned in a very long time. Guest House 3, the guest house furthest east, also receives little to no water, but this time it is due to insufficient pressure. As there is not much of a height difference between the guest house and the tank (and the piping is actually run back uphill), this specific guest house does not have enough gravitational head to supply proper flow. The Nursing Dormitories and Kitchen, which are under construction but due to be completed in the next year, are two major buildings that are not yet connected to any water supply.

Commented [4]: Should we capitalize all building names or nah[?]

Commented [5]: might as well -- makes it clear its a building name

These two buildings alone will be hosting up to 64 nursing students at a time beginning as soon as this fall. There is a sense of urgency involved in providing water to these buildings as soon as possible.

Contaminated water is another concern in Ilula. Currently there are two water sources as previously mentioned. The well water is believed by many of the people in the complex to be too salty to drink. This presumption is due in part to the fact that the old well, which was recalled to be very salty, was dug right beside the new one, but at a much shallower depth. While the new well's water is less salty (see the mineral test in Appendix B); it is difficult to convince the hospital staff it can be used in tool-cleaning applications. This water was also tested for bacteria by incubating the test sample shown in Figure 3 In this test, a light orange color indicates clean water and as the color gets darker, there is more bacteria present. It appeared as though there was very little bacteria in the water meaning it is safe to drink. On the other hand, the city water was found to have a lot more bacteria in it which is unfortunate because this is the water that is currently used for drinking on the complex. The one advantage the city water has is its lack of salt in its water. This makes it ideal for cleaning tools as it will not rust them.

Figure 3: Water Quality Tests from the City Source (Left) and Well Source (Right)

Poor piping remains one of the largest challenges at the hospital and may be the cause of a variety of the other issues occurring on the complex. As mentioned before, the complex piping has been added onto multiple times over the years. Piping of a variety of different diameters and materials has been used to connect the system from point A to B. Each expansion, not only adds to the confusion of the system, but also compromises the flow properties leading to more losses. Further, there are a variety of valves and sub tanks located throughout the system. The valves are used to manually control the system but when they are left inadvertently closed for too long some buildings are left without water. The sub tanks located throughout the complex are used as buffer tanks but they could be used more efficiently. Also, many pipes are left exposed or unburied which leads to corrosion and possible external damages.

The old 32 kL concrete tank located at the top of the hill provides another concern to the hospital. Due to its age and quality, a crack has propagated around the entire wall of the tank as shown in Figure 4. Located approximately 4 feet from the ground, the crack only allows the tank to hold 20 kL of water at a time. The pipe outlet for the pastor's house is located above this crack thus preventing any water from flowing there. On another note, the tank is exposed to the environment through small holes which allow insects and reptiles to get into the water stored there.

Figure 4: 32kL Concrete Tank with Large Crack

Lastly, the hospital relies on the city water for a large amount of their water needs. The problem is that the city shuts off the supply during the dry season which spans approximately half the year. During this time water must be shipped in by truck for most of these procedures to take to place. The buildings reliant on the city water supply include the Theatre, Delivery, and Maternity -- all of which are high priority buildings that have legitimate need of a consistent water supply, as well as a drinking water tank used by the locals.

Water Needs by Building:

To help identify how much water was needed, and which regions used how much relative to one another, a list of water usage estimates was compiled. These estimates are based on the number of people affected, the nature of the activity, etc. For all of the calculations, an overestimate of what they are currently using was recorded so that the hospital would not need to worry about inconsistencies. This also allows for future expansion of the complex. Table 1 shows a table of the calculated water usage estimates by building.

Name	L/person	people/day	L/day total	
Pastor South House	50	4	200	
Pastor Middle House	50	4	200	
Pastor North House	50	4	200	
Nursing Dorms	30	50	1500	
Nursing Kitchen	30	10	300	
Guest House 1	50	4	200	
Guest House 2	50	4	200	
Guest House 3	50	4	200	
Admin Bathrooms	10	20	200	
Emergency	50	10	500	
CTC	30	20	600	
Diagnostics	$\mathbf{1}$	100	100	
General Bathrooms	10	40	400	
Dr. House 1	50	4	200	
Dr. House 2	50	4	200	
Dr. House 3	50	4	200	
Dr. House 4	50	4	200	
Dr. House 5	50	4	200	
Private Ward	30	10	300	
Maternity Ward	25	30	750	
Delivery East	10	10	100	
Delivery West	50	10	500	
Theatre	60	10	600	
General Ward	30	30	900	
Lab	20	4	80	
Laundry	100	4	400	
Washing Spigot	10	20	200	
Drinking Spigot	100	5	500	
Total	10,130 L/day			

Table 1: Water Usage Estimates, by Building

The total estimated water usage was just over 10 kL per day. To see if the current 1 hp pump in the well would be able to supply this, the flow rate provided by the pump under these conditions was calculated (see Appendix C for details). The pump was found to be able to provide this amount of water to the hospital by running for about 4 hours per day.

Proposed Plan Overview:

Our plan to address all of these issues is to supply the entire complex with well water from a combination of three 10 kL tanks placed on top of the concrete tank using new HDPE pipe. This would allow the pump to give clean, drinkable water to the entire hospital complex which would eliminate the reliance on city and rainwater. Placing the three tanks on top of the concrete tank allows for more pressure to be available, ensuring that every building receives a sufficient flow rate. A stress test was also performed (see Appendix D), and it indicates that the concrete tank would be able to safely support the 30 kL of water that is being suggested.

The distribution plan would consist of four main lines, each servicing an area of buildings based on a mixture of geographical location and relative need. These four areas, referred to as "zones" from here on out, are broken up in Figure 5. Each zone is entirely disconnected from the other zones because they each have their own pipe coming out of the tanks. Because of this, each zone could be implemented independently or with other zones.

Figure 5: Ilula Hospital Complex Broken Down by Zones

These zones are broken up as follows:

- **Patient Zone:** General Ward, Private Ward, Lab, Maternity, Admin Bathrooms, General Bathrooms, CTC
- **Urgent Care Zone:** Emergency, Diagnosis, Delivery, Theatre, Drinking Water Spigot
- **Housing Zone:** All Guest Houses, All Dr. Houses, Laundry, Laundry Spigot, All Pastor Houses
- **School Zone:** Nursing Dorms, Nursing Kitchen

Upfront Needs and Costs:

Each zone has unique costs related to it, depending on how far a trench needs to be dug, how much pipe is needed, and any other components the system requires. However, there are upfront costs that would need to be implemented along with the first zone to be approved. These special upfront costs are one time investments that will be needed for any of the four zones. These costs include the tanks themselves, level switches to automatically turn the pump on and off when the water level needs to be adjusted, and paying St Paul Partners employees to assist in the management of the project. The entire upfront budget estimate is shown in Table 2.

rabic 2. Oppone cost Estimate							
Item No.	Description	Qty	Unit	Cost/Unit	Total Cost		
	10 kL SIM Tank	3	# of Tanks	\$1,200.00	\$3,600.00		
2	Ball Valve	2	# of Valves	\$30.00			
3	Pipe Components	5	# of Components	\$20.00	\$100.00		
4	SPP Oversight/Training	2	Days	\$500.00	\$1,000.00		
5	Level Switch/Wiring		System	\$500.00	\$500.00		
	Less Possible In-Kind Contribution	3	# of Tanks	$(1,200.00)$ \$	(3,600.00)		
				Upper Estimate	\$5,260.00		
				Lower Estimate	\$1,660.00		

Table 2: Upfront Cost Estimate

In the cost estimate above, there is a price range given. This price range is dependent on how many of the 10 kL SIM tanks that the hospital complex already has are in good, working order. The hospital complex currently has four 10 kL tanks scattered around, so the price would likely be closer to the lower estimate than the upper one.

Patient Zone:

Figure 6: Patient Zone Overview Map

Overview

The patient zone was named such because it contains all the wards in the hospital. Currently the wards in use are the general ward, the maternity ward, and the CTC ward. The CTC ward, which stands for "Consent to Treatment and Care", is where sufferers of HIV are treated and cared for. This zone has a private ward which is under construction, and has plans for men's and women's wards in the future. In addition to the wards, the zone also includes the bathrooms for administration, the bathrooms for general patients, and the laboratory building because of their nearby geographical location.

Challenges

Access to water in the patient zone in the current system is shown in Table 3.

Proposed Solution

We propose a main pipe coming off one of the three tanks at the top of the hill. A 2-inch main pipe will carry the water down the complex and branch into various 0.75 inch pipes for each building. The general layout and the distances are in Figure 7.

Figure 7: Patient Zone Map

In order to model the feasibility of this system, we used a program called EES to solve all the Bernoulli equations simultaneously. Each building was modeled as having one sink connected to the pipe where it ended at the building. For a worse case flow scenario, all the sinks were turned on simultaneously. Through our analysis we found that even in this situation, each building would have enough flow for even a few sinks.

Projected Budget

Figure 8: Patient Zone Projected Flow Rates

The materials is needed for this zone can help in the materials needed for this zone can be broken down into three main topics:

pipe, piping components, and labor. The labor includes digging, burying the pipe, inspecting and cleaning sinks, and transportation of the pipe. An overall 20% contribution from the hospital was assumed when making this estimate. The cost estimate for this zone is shown in Table 4.

T*able 4: Patient Zone Projected Budget*

Figure 9: Urgent Care Zone Overview Map

Overview

The urgent care zone was named such because it contains all of the buildings used for very serious treatment. This includes the theatre (surgery), emergency building, diagnosis, and delivery. Because this is where locals go to currently get their water, the drinking water spigot is also in this zone.

Challenges

Access to water in the urgent care zone in the current system is shown in Table 5.

Table 5: Urgent Care Zone Water Situation

Proposed Solution

We propose a main pipe coming off one of the three tanks at the top of the hill. A 2-inch main pipe will carry the water down the complex and branch into various 0.75 inch pipes for each building. The general layout and the distances are shown in Figure 10.

Figure 10: Urgent Zone Proposed Solution

Using a similar method to that described in the Patient Zone, we found that each building would have plenty of flow for even a few sinks at a time. Because this system has relatively few buildings, each building is also hardly impacted by the open/closed position of the others, making it a robust system capable of expansion. The flow rates are shown in detail in Figure 11.

Figure 11: Urgent Care Zone Projected Flow Rates

This is also the only zone that would have a use for soft water to clean their medical equipment. At the moment, our plan would be to leave the city/rainwater system hooked up to one or two sinks in each building so that they can still get soft water for cleaning their metal surgery equipment. The city and rainwater mixture was found to have lots of bacteria in it, but this isn't an issue for cleaning the tools because the hospital uses an autoclave for this purpose (which would kill all of the bacteria either way). Our system would provide water for all other uses in these buildings such as washing hands, cleaning off surgery tables, drinking, etc.

Projected Budget

The materials needed for this zone are the same as the other zones – pipe, piping components, and labor. An overall 20% contribution was assumed when making this estimate. The cost estimate for this zone is shown in Table 6.

Table 6: Urgent Care Zone Projected Budget

Housing Zone:

Figure 12: Urgent Care Zone Overview Map

Overview

The "Housing Zone" is a grouping of all the living quarters on the hospital grounds except for the new nursing school. This includes the doctor housing where the physicians live, the guest housing, and the houses for the pastor.

Challenges

Access to water in the patient zone in the current system is shown in Table 7.

Building	City Water Connection	Pump Water Connection	Is there water?
Guest House 1	N ₀	Yes	No
Guest House 2	No	Yes	Yes
Guest House 3	N ₀	Yes	Yes
Dr. House 1	N ₀	Yes	Inconsistent
Dr. House 2	No	Yes	Inconsistent
Dr. House 3	No	Yes	Inconsistent
Dr. House 4	N ₀	Yes	Inconsistent
Dr. House 5	N ₀	No	No
Pastor House North	N ₀	Yes	No
Pastor House Middle	No	Yes	No
Pastor House South	No	Yes	No

Table 7: Housing Zone Water Situation

The first guest house doesn't get enough pressure through a combination of being highest on the hill and the complicated small metal piping system that leads to it. The other 2 guest houses have a more direct piping system as well being lower on the hill and have water. The doctor's houses are able to get water but are often shut off in order to increase system pressure elsewhere. The pastor's houses have piping directly to the concrete tank at the top but are connected at the same level as a large crack around the tank. Because the water can't remain above the crack for long due to leakage, the pastor's houses rarely have water.

Proposed Solution

We propose a main pipe coming off one of the three tanks at the top of the hill. A 2-inch main pipe will carry the water down the complex and branch into various 0.75 inch pipes for each building. The general layout and the distances are shown in Figure 13.

Figure 13: Housing Zone Proposed Solution

In order to model the feasibility of this system, we used a program called EES to solve all the Bernoulli equations simultaneously. Each building was modeled as having 1 sink connected to the pipe where it ended at the building. For a worse case flow scenario, all the sinks were turned on simultaneously. Through our analysis we found that even in this situation, each building would have enough flow for even a few sinks. The flow rates for worst and best case scenario are shown in Figure 14.

Figure 14: Housing Zone Projected Flow Rates

School Zone:

Figure 15: School Zone Map

Overview

The school zone is named on behalf of the nursing school dorms and kitchen that lie within it. The construction of these buildings is nearing completion, and all plumbing inside the buildings is completed. However, there is no connection to an external water supply or a plan in place for installing one.

Challenges

Access to water in the school zone in the current system is shown in Table 8.

Table 8: School Zone Water Situation

Proposed Solution

Just as in every other system, we propose a main pipe coming off one of the three tanks at the top of the hill. A 2-inch main pipe will carry the water down the complex and branch into various 0.75 inch pipes for each building. The general layout and the distances are shown in Figure 16.

Figure 16: School Zone Proposed Solution

Using a similar method to that described in the Patient Zone, we found that each of the two buildings in this zone would receive very significant flow rates. Because this system only has two buildings, the flow rate is essentially a constant, making it a very robust system capable of expansion. The flow rates are shown in detail in Figure 17.

Figure 17: School Zone Projected Flow Rates

Projected Budget

The materials needed for this zone are the same as the other zones – pipe, piping components, and labor. An overall 20% contribution was assumed when making this estimate. The cost estimate for this zone is shown in Table 9.

Item No.	Description	Qty	Unit	Cost/Unit	Total Cost
1	2" HDPE pipe (63 mm)		1 150m Rol I	\$750.00	\$750.00
2	0.75" HDPE pipe (25 mm)		1 150m Roll	\$100.00	\$100.00
3	Transport for pipe		1 Trip	\$190.00	\$190.00
4	Ball valve		1 Quantity	\$30.00	\$30.00
5	Pipe Components		15 Quantity	\$15.00	\$230.00
7	Labor for Pipeline and Plumbing		2Building	\$100.00	\$200.00
8	Labor for digging trenches		175 Meter	\$2.19	\$390.00
	School Zone Sub-Total				\$1,890.00
9	Less: In-Kind Contribution (20%)				(370.00)
	School Zone Donor Sub-Total				\$1,520.00

Table 9: School Zone Projected Budget

Total Cost:

Ideally, all four zones would be implemented at the same time. This would allow for maximum impact on the hospital, as well as include some cost savings. The total budget for the entire project is shown in Table 10.

Table 10: Total Project Budget

The pipe discount shown above is a price saving that can be done by wasting less pipe. Pipe for projects like this is purchased in 150 meter bundles -- if all of the zones are done at the same time, there will be less leftover pipe overall.

In summary, the total cost to implement our entire design would be somewhere between \$11,500 and \$15,000.

Appendix A - Finding Building Heights:

During our visit at Ilula hospital, our GPS was not accurate enough to give us approximate heights of each of the buildings. Because the relative heights of each of the buildings was so important to the working operation of the water system (our system is powered by gravity) we developed a new method for measuring relative building heights.

The foundations of each building in the hospital complex were visible above the ground, so these were used to our advantage. One person would kneel down and place their eye level with a building foundation until the foundation made a perfect line, and then line up that foundation with the next building. A second person would run over to the second building and move their hand slowly up the building's outside wall. When the hand lined up with the first building's foundation, the first person would shout to the second person to keep their hand steady, and then run over with a tape measure and measure from the second person's hand to the second building's foundation. The relative heights between the foundations were recorded as the relative heights between the buildings. This method had an accuracy of \pm 1 brick, or roughly 4 inches.

The building codes and relative heights of each building are shown in Table 11.

Table 11: Total Project Budget

Appendix B - Well Water Mineral Test Results:

THE UNITED REPUBLIC OF TANZANIA

MINISTRY OF WATER

HE VERY OF WATER

TRIMBA WATER QUALITY LABORATORY

P O BOX 570 TEL +255 26 2700134

REMARKS

Slightly turbid and alkaline water
Hard water
Water is "Slightly fresh" due to the amount of total dissolved solids to be less than
1000 mg/l.

Vargagne

RECOMMENDATIONS
Water is suitable for drinking and other domestic purposes according to Tanzania standards.

 DATE 10.05.2014

UNATY INBORATORY HEAD, WARER WATER BUALITY LABORATORY

26

Appendix C - Pump and System Curve:

The pump curve is a property of the pump, and the system curve is defined by our system, including the pipe diameter, height change, length of pipe, etc. This was done when pumping into a 1.5" pipe (already in place) and up to a location that is 15 feet higher than the bottom of the concrete tank, meant to simulate a SIM tank on top of the concrete tank. The steady state water level of the pump was assumed to be the same as the steady state water level of a 3 hp pump in this well (which was known), so it is giving an underestimate of the flow. Despite this, the flow rate out of the pump was a healthy 44.5 L/min with 85m of head being created by the pump.

*Figure *: Pump Operating Curve*

Appendix D - Stress Analysis on the Concrete Tank:

A stress analysis was done in SolidWorks to simulate the force incurred by the 3 10 kL SIM tanks on top of the concrete tank. The concrete tank was modeled as a hollow cylinder supported by an internal post as shown in figure *. Its material properties were considered to be of the poorest quality (yield stress of 20 MPa). When full of water, the three tanks weigh approximately 300,000 Newtons (or 67,500 pounds). This force produces a max Von Mises stress of 6 MPa near the post. While this provides a safety of approximately 3, caution should still be taken due to the uncertainty involved in the method and quality of the concrete poured. Figure * provides a screenshot view of the study. The black lines signify the intended layout of the SIM tanks configuration.

*Figure *: Stress Analysis on the Concrete Tank*

Appendix E1 - EES Code for Patient Zone:

function f_val(Re) IF (Re < 2300) THEN f _{_val} = $64/Re$ ELSE $f_{val} = (-1.8 * LOG10(6.9/Re))^(-2)$ ENDIF END

{CONVERSIONS and CONSTANTS} ipf = 12 [in/ft] fpm = 1/ipf * 1/2.54 [cm/in] * 100 [cm/m] ipm = ipf*fpm rho = 1000 [kg/m^3] $g = 9.81$ [m/s^2] $nu = 1.31 * 10^(-6)$ sinkHeight = 1 sinkLength = 2 extraTankHeight = 14 [ft] / fpm

{-------------NECESSARY HEIGHTS-----------} H_tank=(110[ft])/fpm {32kL cement tank} H_nurse_office=H_tank-54.5[in]/ipm {nurse school offices} H_nurse_class=H_nurse_office-53.75[in]/ipm {nurse school classrooms, floor 1} H_emerg=H_nurse_class-(45.25[in])/ipm {emergency room} H_diag=H_emerg-50[in]/(ipf*fpm) {diagnostics} H_delivery_east=H_diag-38.5[in]/ipm {Delivery east half} H_delivery_west=H_delivery_east-10[in]/ipm {Delivery west half} H_theatre=H_delivery_west-7[ft]/fpm {Theatre} H_admin=H_nurse_class-2[ft]/fpm {administration building} H_adminBr=(H_emerg+H_admin)/2 {admin bathroom} H_CTC=H_emerg-11[in]/ipm {HIV building, CTC building, Consent to Treatment and Care} H_bathrooms=H_diag {other bathroom} H_private=H_maternity {private ward} H_general=H_theatre-22[in]/ipm {General ward} H_maternity=H_general+5[ft]/fpm {Maternity} H_lab=H_general-53[in]/ipm {Laboratory}

H_A = H_adminBr - 1 [m] {The first pipe junction: junction A} $H_B = H_{adminBr - 1 [m]}$ H_C = H_bathrooms - 1 [m] $H_D = H_p$ rivate - 1 [m] H_E = H_maternity - 1 [m] H_F = H_general

{VALVE CONTROL} open = 15 {Open sink is still a Kv of 15} closed = 10^19 elbow = 1.5 building = 10*elbow

K_V_A_CTC = closed K_V_B_adminBr = closed K_V_C _C_bathrooms = closed K_V_D_private = closed K_V_E_maternity = closed K_V_F_general = closed K_V_F_lab = open

{Pipe Diameters} mainPipeIn = 2 [in] mainPipe = mainPipeIn / ipm smallPipe = 0.75 [in] / ipm

{Pipe Diameters} D_tank_A = mainPipe D_A_CTC = smallPipe D_A_B = mainPipe D_B_adminBr = smallPipe D_B_C = mainPipe D_C_bathrooms = smallPipe D_C_D = mainPipe D_D_private = smallPipe D_D_E = mainPipe D_E_maternity = smallPipe D_E_F = mainPipe D_F_general = smallPipe D_F_lab = smallPipe

{Pipe Lengths} $L_{\frac{1}{2}}$ tank $_A = 60 + 60$ L_A_CTC = 5 + sinkLength $L_A_B = 5$ L_B_adminBr = 5 + sinkLength $L_B_C = 5 + 40$ L_C_bathrooms = 20 + sinkLength $L_C_D = 15$ L_D_private = 15 + sinkLength $L_D_E = 10$ L_E_maternity = 5 + sinkLength $L_E_F = 20$ L_F_general = 20 + 5 + sinkLength L_F_lab = 35 + sinkLength

{Length Losses} K_L_tank_A = elbow K_L_A_CTC = building $K_L_A_B = 0$ K_L_B_adminBr = building $K_L_B_C =$ elbow K_L_C_bathrooms = building $K_L_C_D = 1.5$ K_L_D_private = building $K_L_D_E = 0$ K_L_E_maternity = building $K_L_E_F = 0$ K_L_F_general = building + elbow K_L_F_lab = building

K_L_tank_A) p_tank = 0 [Pa] $v_{\text{rank}} = 0$ [m/s] {A to CTC} f_A_CTC = f_val(Re_A_CTC) Re_A_CTC = (4*abs(Q_A_CTC))/(pi*nu*D_A_CTC) {Holland Eqn} Q_A CTC = (pi $*$ D_A_CTC^2/4) $*$ v_CTC $(p_CTC - p_A)/(rho * g) + (H_CTC + sinkHeight) - (H_A) = -1 * v_CTC^2/(2 * g) * (f_A_CTC * L_A_CTC/D_A_CTC + K_L_A_CTCC + K_V_A_CTCC)$ {Bernoulis} p_CTC = 0 [Pa] {A to B} $Q_A_B = (pi * D_A_B^2)^* v_B$ $Re_A_B = (4 * abs(Q_A_B)) / (pi * nu * D_A_B)$ {Holland Eqn} $f_A_B = f_value(Re_A_B)$ (p_B - p_A)/(rho * g) + (H_B) - (H_A) = -1 * v_B^2/(2*g) * (f_A_B * L_A_B/D_A_B + K_L_A_B) {Bernoulis} {B to Admin Br}

(p_A-p_tank)/(rho*g) +(v_A^2-v_tank^2) / (2*g) + (H_A) - (H_tank + extraTankHeight) = -1 * v_A^2/(2*g) * (f_tank_A*L_tank_A/D_tank_A +

Q_B_adminBr= (pi * D_B_adminBr^2/4) * v_adminBr Re_B_adminBr = (4*abs(Q_B_adminBr))/(pi*nu*D_B_adminBr) {Holland Eqn} f_B_adminBr = f_val(Re_B_adminBr) $(p_adminBF - p_B)/(rho * g) + (H_adminBF + sinkHeight) - (H_B) = -1 * v_adminBr^2/2/g) * (f_B_adminBF * L_B_adminBF / D_B_adminBF + (h_a_adminBF + h_B)$ K_L_B_adminBr+ K_V_B_adminBr) {Bernoulis} p_adminBr = 0 [Pa]

{B to C} $Q_B_C = (pi * D_B_C^2C^2/4) * v_C$ $Re_B_C = (4*abs(Q_B_C)) / (pi*nu*D_B_C)$ {Holland Eqn} $f_B_C = f_value(Re_B_C)$ $(p_C - p_B)/(rho * g) + (H_C) - (H_B) = -1 * v_C^2/(2 * g) * (f_B_C * L_B_C / D_B_C + K_L_B C)$ {Bernoulis}

{C to bathrooms} Q_C_bathrooms= (pi * D_C_bathrooms^2/4) * v_bathrooms Re_C_bathrooms = (4*abs(Q_C_bathrooms))/(pi*nu*D_C_bathrooms) {Holland Eqn} f_C_bathrooms = f_val(Re_C_bathrooms) $(p_bathrooms \cdot p_C)/(rho * g) + (H_bathrooms + sinkHeight) - (H_C) = -1 * v_bathrooms^2/(2*g) * (f_C_b - h)$ L_C_bathrooms/D_C_bathrooms + K_L_C_bathrooms + K_V_C_bathrooms) {Bernoulis} p_bathrooms = 0 [Pa]

{C to D} $Q_C_D = (pi * D_C_D^2/4) * v_D$ Re_C_D = (4*abs(Q_C_D))/(pi*nu*D_C_D) {Holland Eqn} $f_C_D = f_value(Re_C_D)$ $(p_b - p_c)/(rho * g) + (H_p) - (H_c) = -1 * v_p^2/(2 * g) * (f_c - p * L_c - p/D_c - p + K_c - p)$ {Bernoulis}

{D to Private Ward} Q_D_private = (pi * D_D_private^2/4) * v_private Re_D_private = (4*abs(Q_D_private))/(pi*nu*D_D_private) {Holland Eqn}

{==BERNOULI EQUATIONS==}

 $f_{\text{max}}A = f_{\text{val}}(Re_{\text{rank}}A)$

Re_tank_A = (4*abs(Q_tank_A))/(pi*nu*D_tank_A) Q_{L} tank_A = (pi * D_tank_A^2/4) * v_A

{tank to A}

f_D_private = f_val(Re_D_private) $(p_private \cdot p_D)/(rho * g) + (H_private + sinkHeight) \cdot (H_D) = -1 * v_private^2/(2 * g) * (f_D_private * L_D_private/D_D_private + K_L_D_private$ + K_V_D_private) {Bernoulis} p_private = 0 [Pa]

{Junction D to Junction E} Q_D_E= (pi * D_D_E^2/4) * v_E $Re_D_E = (4 * abs(Q_D_E))/(pi * nu * D_E)$ {Holland Eqn} $f_D E = f_Nal(Re_D E)$ $(p_E - p_D)/(rho * g) + (H_E) - (H_D) = -1 * v_E^2/(2 * g) * (f_D_E * L_D_E/D_D_E + K_L_D_E)$ {Bernoulis}

{Junction E to Maternity} Q_E _maternity = (pi $*$ D_E _maternity^2/4) $*$ v_maternity Re_E_maternity = (4*abs(Q_E_maternity))/(pi*nu*D_E_maternity) {Holland Eqn} f_E_maternity = f_val(Re_E_maternity) (p_maternity - p_E)/(rho * g) + (H_maternity+sinkHeight) - (H_E) = -1 * v_maternity^2/(2*g) * (f_E_maternity * L_E_maternity/D_E_maternity + K_L_E_maternity + K_V_E_maternity) {Bernoulis} p_maternity = 0 [Pa]

{Junction E to Junction F} $Q_E_F = (pi * D_E_F^2/4) * v_F$ Re_E_F = (4*abs(Q_E_F))/(pi*nu*D_E_F) {Holland Eqn} $f_E_F = f_value(Re_E_F)$ $(p_F - p_E)/(rho * g) + (H_F) - (H_E) = -1 * v_F^2/(2 * g) * (f_E - F * L_E - F/D_E - F + K_L - E_F)$ {Bernoulis}

{Junction F to Generral} Q_F_general= (pi * D_F_general^2/4) * v_general Re_F_general = (4*abs(Q_F_general))/(pi*nu*D_F_general) {Holland Eqn} f_F_general = f_val(Re_F_general) $(p_general - p_F)/(rho * g) + (H_general + sinkHeight) - (H_F) = -1 * v_general^2/(2*g) * (f_F_general * L_F_general/D_F_general)$ K_L_F_general + K_V_F_general) {Bernoulis} p_general = 0 [Pa]

{Junction F to lab} Q_F _lab = (pi * D_F _lab^2/4) * v_lab Re_F_lab = (4*abs(Q_F_lab))/(pi*nu*D_F_lab) {Holland Eqn} f_F_lab = f_val(Re_F_lab) $(p_lab - p_F)/(rho * g) + (H_lab + sinkHeight) - (H_F) = -1 * v_lab^2/(2 * g) * (f_F_lab * L_F_lab) - p_lab + K_ L_F_lab + K_ V_ F_lab)$ {Bernoulis} $p_$ lab = 0 [Pa]

{Flow divisions} Q_{L} tank_A = Q_{L} A_CTC + Q_{L} A_B $Q_A_B = Q_B_{adminBr} + Q_B_{C}$ $Q_B_C = Q_C_b$ athrooms + Q_C_D $Q_C_D = Q_D$ private + Q_D_E $Q_D_E = Q_E_maternity + Q_E_F$ $Q_E_F = Q_F_{general} + Q_F_{lab}$

{Nicer Units} $Q_{\text{tank_A_lpm}} = Q_{\text{tank_A}} * 60000 [s * L/(m^2 * min)]$ Q_A_CTC_lpm = Q_A_CTC * 60000 [s*L/(m^3*min)] Q_B_d adminBr_lpm = Q_B_d adminBr * 60000 [s*L/(m^3*min)] Q_C_bathrooms_lpm = Q_C_bathrooms * 60000 [s*L/(m^3*min)] Q_D_private_lpm = Q_D_private * 60000 [s*L/(m^3*min)] Q_E_maternity_lpm = Q_E_maternity * 60000 [s*L/(m^3*min)] Q_F_general_lpm = Q_F_general * 60000 [s*L/(m^3*min)] Q_F_lab_lpm = Q_F_lab * 60000 [s*L/(m^3*min)]

Appendix E2 - EES Code for Urgent Care Zone:

function f_val(Re) IF (Re < 2300) THEN f _{_val} = $64/Re$ ELSE $f_val = (-1.8 * LOG10(6.9/Re))^(-2)$ ENDIF END

{CONVERSIONS and CONSTANTS} 1 / fpm = ipf * 2.54 [cm/in] * .01 [m/cm] ipf = 12 [in/ft] $\text{im} = \text{ipf*fpm}$ rho = 1000 [kg/m^3] $g = 9.81$ [m/s^2] nu = 1.31 [m^2/s] * 10^(-6) sinkHeight = 1 sinkLength = 2 extraTankHeight = 5 [ft] / fpm

{-----------RELEVANT HEIGHTS--------------}

H_well=0 {well} H_tank=(110[ft])/fpm {32kL cement tank}

H_nurse_office=H_tank-54.5[in]/ipm {nurse school offices} H_nurse_class=H_nurse_office-53.75[in]/ipm {nurse school classrooms, floor 1} H_emerg=H_nurse_class-(45.25[in])/ipm {emergency room} H_diag=H_emerg-50[in]/(ipf*fpm) {diagnostics} H_delivery_east=H_diag-38.5[in]/ipm {Delivery east half} H_delivery_west=H_delivery_east-10[in]/ipm {Delivery west half} H_theatre=H_delivery_west-7[ft]/fpm {Theatre} H_lochness=H_theatre-67[in]/ipm{cement tank} H_laundry=H_lochness-20[in]/ipm {Laundry} H_general=H_theatre-22[in]/ipm {General ward} H_lab=H_general-53[in]/ipm {Laboratory} H_wash_spigot = (H_laundry + H_lab)/2 {washing wash_spigot} H_drinking_spigot = H_theatre

H_A = H_emerg - 1 [m] H_B = H_emerg - 1 [m] H_C = H_delivery_east H_D = H_theatre

mainPipe = 2 [in] / ipm minorPipe = 0.75 [in] / ipm open = 15 closed = 10^19 elbow = 1.5 building = 10*elbow

{Habkuk's Hut} K_V_B_emerg = closed K_V_B_diag = closed

D_B_emerg = minorPipe L_B_emerg = 10 + 5 + sinkLength K_L_B_emerg = building + elbow Q_B = $Q = (pi * D_B)$ emerg^2/4) * v_emerg Re_B_emerg = (4*abs(Q_B_emerg))/(pi*nu*D_B_emerg) {Holland Eqn} f_B_emerg = f_val(Re_B_emerg) $(p_emerg - p_B)/(rho * g) + (H_emerg + sinkHeight) - (H_B) = -1 * v_emerg^2/(2 * g) * (f_B_emerg * L_B_emerg/D_B_emerg + K_L_B_emerg + g_mag)$ K_V_B_emerg) {Bernoulis} p_emerg = 0 [Pa] {Junction B to diag} D_B_diag = minorPipe L_B_diag = 35 + 25 + 5 + building K_L_B_diag = building + elbow*2 Q_B_d diag = (pi * D_B_d diag^2/4) * v_diag Re_B_diag = (4*abs(Q_B_diag))/(pi*nu*D_B_diag) {Holland Eqn} f_B_diag = f_val(Re_B_diag) $(p_diag - p_B)/(rho * g) + (H_diag + sinkHeight) - (H_B) = -1 * v_diag^2/(2 * g) * (f_B_diag * L_B_diag/D_B_diag + K_L_B_diag + K_V_B_diag)$ {Bernoulis} p_diag = 0 [Pa] {Junction A to C} D_A_C = mainPipe

v_tank = 0 [m/s] {Junction A to B} D_A_B = mainPipe $L_A_B = 20$ $K_L_A_B = 0$ $Q_A_B = (pi * D_A_B^2) / 4 * v_B$ $Re_A_B = (4 * abs(Q_A_B)) / (pi * nu * D_A_B)$ {Holland Eqn} $f_A_B = f_value(Re_A_B)$ $(p_B - p_A)/(rho * g) + (H_B) - (H_A) = -1 * v_B^2/(2 * g) * (f_A B * L_A B/D_A B + K_L_A B)$ {Bernoulis}

{Tank to Junction A} D_tank_A = mainPipe L_tank_A = 40 [m] K_L _tank_A = 0 Q_tank_A = (pi * D_tank_A^2/4) * v_A Re_tank_A = (4*abs(Q_tank_A))/(pi*nu*D_tank_A) {Holland Eqn} $f_{\text{rank_A}} = f_{\text{val}}(Re_{\text{rank_A}})$ {Bernouli} $(p_A - p_L)$ tank)/(rho*g) +(v_A^2-v_tank^2) / (2*g) + (H_A) - (H_tank + extraTankHeight) = -1 * v_A^2/(2*g) * (f_tank_A*L_tank_A/D_tank_A + K_L_tank_A) p_tank = 0 [Pa] {guage pressure}

K_V_C_delivery_east = closed K_V_D_theatre = closed K_V_D_drinking_spigot = open

{Junction B to emerg}

 $L_A_C = 50$ [m] $K_L_A_C = 0$

 $Q_A_C = (pi * D_A_C^2/4) * v_C$

 $Re_A_C = (4 * abs(Q_A_C)) / (pi * nu * D_A_C)$ {Holland Eqn}

Re_D_theatre = (4*abs(Q_D_theatre))/(pi*nu*D_D_theatre) {Holland Eqn} f_D_theatre = f_val(Re_D_theatre) $(p_\text{1}$ theatre - p_D)/(rho * g) + (H_theatre) - (H_D) = -1 * v_theatre^2/(2*g) * (f_D_theatre * L_D_theatre/D_D_theatre + K_L_D_theatre + K_V_D_theatre) {Bernoulis} p_theatre = 0 [Pa] {Junction D to drinking_spigot} D_D_drinking_spigot = minorPipe L_D_drinking_spigot = 15 + 15 + sinkLength K_L_D_drinking_spigot = 5*elbow Q_D_drinking_spigot = (pi * D_D_drinking_spigot^2/4) * v_drinking_spigot Re_D_drinking_spigot = (4*abs(Q_D_drinking_spigot))/(pi*nu*D_D_drinking_spigot) {Holland Eqn} f_D_drinking_spigot = f_val(Re_D_drinking_spigot) (p_drinking_spigot - p_D)/(rho * g) + (H_drinking_spigot + sinkHeight) - (H_D) = -1 * v_drinking_spigot^2/(2*g) * (f_D_drinking_spigot * L_D_drinking_spigot/D_D_drinking_spigot + K_L_D_drinking_spigot + K_V_D_drinking_spigot) {Bernoulis} p_drinking_spigot = 0 [Pa]

{Flow Balance} $Q_{\text{tank_A}} = Q_{\text{t}} - B + Q_{\text{t}} - A_{\text{t}}$ $Q_A_B = Q_B$ emerg + Q_B diag Q_A_C = Q_C_delivery_east + Q_C_D $Q_C_D = Q_D_{drinking_spigot + Q_D_{theatre}$

{Junction C to delivery_east}

{Junction C to D} D_C_D = mainPipe $L_C_D = 20$ [m] K L C $D = 0$

 $Q_C_D = (pi * D_C_D^2/4) * v_D$

 $f_C_D = f_S = f_C$ = $f_C = f_C$

{Junction D to theatre} D_D_theatre = minorPipe L_D_theatre = 25 + sinkLength K_L_D_theatre = building

Re_C_D = (4*abs(Q_C_D))/(pi*nu*D_C_D) {Holland Eqn}

 Q_D_{t} heatre = (pi * D_D_theatre^2/4) * v_theatre

{Easy to Read} $flow_{conv} = 60000$ Q_tank_A_lpm = Q_tank_A * flow_conv Q_B_emerg_lpm = Q_B_emerg * flow_conv

D_C_delivery_east = minorPipe L_C_delivery_east = 35 + sinkLength K_L_C_delivery_east = building Q_C_delivery_east = (pi * D_C_delivery_east^2/4) * v_delivery_east Re_C_delivery_east = (4*abs(Q_C_delivery_east))/(pi*nu*D_C_delivery_east) {Holland Eqn} f_C_delivery_east = f_val(Re_C_delivery_east) $(p_delivery_east - p_C)/(rho * g) + (H_delivery_east + sinkHeight) - (H_C) = -1 * v_delivery_east^2/(2 * g) * (f_C_delivery_east *$ L_C_delivery_east/D_C_delivery_east + K_L_C_delivery_east + K_V_C_delivery_east) {Bernoulis} p_delivery_east = 0 [Pa]

 $f_A_C = f_value(Re_A_C)$ (p_C - p_A)/(rho * g) + (H_C) - (H_A) = -1 * v_C^2/(2*g) * (f_A_C * L_A_C/D_A_C + K_L_A_C) {Bernoulis}

 $(p_p - p_c)/(rho * g) + (H_p) - (H_c) = -1 * v_p^2/(2 * g) * (f_c - p * L_c) - (D - L_c) + K_c - (L_c)$ {Bernoulis}

Q_C_delivery_east_lpm = Q_C_delivery_east * flow_conv Q_D_theatre_lpm = Q_D_theatre * flow_conv Q_D_drinking_spigot_lpm = Q_D_drinking_spigot * flow_conv

Q_B_diag_lpm = Q_B_diag * flow_conv

Appendix E3 - EES Code for Housing Zone:

function f_val(Re) IF (Re < 2300) THEN f _{_val} = $64/Re$ ELSE $f_{val} = (-1.8 * LOG10(6.9/Re))^(-2)$ ENDIF END

{CONVERSIONS and CONSTANTS} 1 / fpm = ipf * 2.54 [cm/in] * .01 [m/cm] ipf = 12 [in/ft] $\text{im} = \text{ipf*fpm}$ rho = 1000 [kg/m^3] $g = 9.81$ [m/s^2] nu = 1.31 [m^2/s] * 10^(-6) sinkHeight = 1 sinkLength = 2 extraTankHeight = 5 [ft] / fpm {14 feet if tank is full}

{-----------RELEVANT HEIGHTS--------------}

H_well=0 {well} H_tank=(110[ft])/fpm {32kL cement tank}

{Housing} H_guest1=H_tank-(8[ft] * ipf + 5[in]) / ipm H_guest2=H_guest1 - 46[in]/ipm H_guest3=H_guest2 - 10[in]/ipm H_dr3=H_lochness + 6[in]/ipm H dr5 = 22 [m] {ESTIMATE} H_dr2 = 27 [m] {ESTIMATE} H_dr1 = H_guest2 {ESTIMATE} H_dr4=H_dr3 - 26[in]/ipm H_old_pastor = H_tank-10[ft] / fpm {south pastor's house} H_new_pastor=H_old_pastor {middle pastor's house} H_old_old_pastor=H_old_pastor {north pastor's house}

H_nurse_office=H_tank-54.5[in]/ipm {nurse school offices} H_nurse_class=H_nurse_office-53.75[in]/ipm {nurse school classrooms, floor 1}

H_emerg=H_nurse_class-(45.25[in])/ipm {emergency room}

H_diag=H_emerg-50[in]/(ipf*fpm) {diagnostics}

H_delivery_east=H_diag-38.5[in]/ipm {Delivery east half}

H_delivery_west=H_delivery_east-10[in]/ipm {Delivery west half}

H_theatre=H_delivery_west-7[ft]/fpm {Theatre} H_lochness=H_theatre-67[in]/ipm{cement tank}

H_laundry=H_lochness-20[in]/ipm {Laundry}

H_general=H_theatre-22[in]/ipm {General ward}

H_lab=H_general-53[in]/ipm {Laboratory}

H_spigot = (H_laundry + H_lab)/2 {washing spigot}

H_A = H_guest1 - 1 [m] H_B = H_guest2 - 1 [m]

H_E = H_dr2 - 1 [m] H_F = H_dr3 - 1 [m] H_G = H_dr4 - 1 [m] H_H = H_dr3 - 1 [m] H_I = H_laundry - 1 [m] H_J = H_new_pastor - 1 [m] mainPipeID = 2 [in] mainPipe = mainPipeID / ipm minorPipe = 0.75 [in] / ipm $open = 15$ $\dot{\text{closed}} = 10^{\circ}19$ $\mathsf{elbow} = 1.5$ building = 15 {Habkuk's Hut} KV_A_guest1 = open KV_B_guest2 = open $KV_C_dr1 = open$ KV_D_guest3 = open KV_E_dr2 = open KV_F_dr5 = open KV_G_dr4 = open $KV_H_dr3 = open$ KV_I_laundry = open KV_I_spigot = open K_V_J_old_pastor = closed K_V_J_new_pastor = closed K_V_J_old_old_pastor = open {Pipe Diameters} D_tank_A = mainPipe D_A_guest1 = minorPipe D_A_B = mainPipe D_B_guest2 = minorPipe D_B_C = mainPipe D_C_dr1 = minorPipe D_C_D = mainPipe D_D_guest3 = minorPipe D_D_E = mainPipe D_E_dr2 = minorPipe D_E_F = mainPipe

H_C = H_dr1 - 1 [m] H_D = H_guest3 - 1 [m]

D_F_dr5 = minorPipe D_F_G = mainPipe D_G_dr4 = minorPipe D_G_H = mainPipe D_H_dr3 = minorPipe D_H_I = mainPipe D_I_laundry = minorPipe

D_I_spigot = minorPipe

{Pipe Losses}

KL_I_laundry = building KL_I_spigot = elbow * 4 {Pipe Lengths} L_{L} tank $A = 25 + 15$ L_A_guest1 = 10 [m] + sinkLength $L_A_B = 20$ [m] L_B_guest2 = 5 [m] + sinkLength $L_B_C = 10$ [m] L_C_dr1 = 5 [m] + sinkLength $L_C_D = 20$ [m] L_D_guest3 = 10 [m] + sinkLength $L_{D_{i}}E = 10$ [m] + 20 [m] + 20 [m] L_E_dr2 = 10 [m] + sinkLength $L_E_F = 40$ [m] L_F_dr5 = 35 [m] + 5 [m] + sinkLength $L_F_G = 10$ [m] L_G_dr4 = 10 [m] + sinkLength $L_G_H = 15$ [m] L_H_dr3 = 10 [m] + sinkLength $L_H = 25$ [m] L_I_laundry = 5 [m] + sinkLength L_I_spigot = 25 [m] + sinkLength {Tank to Junction A} $Q_{\text{rank_A}} = (pi * D_{\text{rank_A}}^2 / 4) * v_{\text{A}}^2$ Re_tank_A = (4*abs(Q_tank_A))/(pi*nu*D_tank_A) {Holland Eqn} $f_{\text{rank_A}} = f_{\text{val}}(Re_{\text{rank_A}})$ {Bernouli} $(p_A - p_{\text{rank}})/(rho^*g) + (v_A^A - v_{\text{rank}}^A)/((2^*g) + (H_A) - (H_{\text{rank}} + \text{extraTankHeight}) = -1 * v_A^A/2/(2^*g) * (f_{\text{rank}}^A + h_A^A)$ KL_tank_A) p_tank = 0 [Pa] {guage pressure} v_tank = 0 [m/s]

{Junction A to Guest House 1} Q_A_g uest $1 = (pi * D_A_guest1^2/4) * v_guest1$ Re_A_guest1 = (4*abs(Q_A_guest1))/(pi*nu*D_A_guest1) {Holland Eqn} f_A_guest1 = f_val(Re_A_guest1)

KL_tank_A = elbow KL_A_guest1 = building $KL_A_B = 0$ KL_B_guest2 = building $KL_B_C = 0$ KL_C_dr1 = building $KL_C_D = 0$ KL_D_guest3 = building $KL_D_E =$ elbow $*$ 2 KL_E_dr2 = building KL E $F = 0$

KL_F_dr5 = building + elbow

 $KL_F_G = 0$ $KL_G_dra = \text{building}$ $KL_G_H = 0$ KL_H_dr3 = building $KL_H_l = 0$

 $(p_guest2 - p_B)/(rho * g) + (H_guest2 + sinkHeight) - (H_B) = -1 * v_guest2^2/ (2 * g) * (f_B_guest2 * L_B_guest2/D_B_guest2 + KL_B_guest2 +$ KV_B_guest2) {Bernoulis} p_guest2 = 0 [Pa] {Junction B to C} $Q_B_C = (pi * D_B_C^2 / 4) * v_C$ $Re_B_C = (4*abs(Q_B_C)) / (pi*nu*D_B_C)$ {Holland Eqn} $f_B_C = f_value(Re_B_C)$ $(p_C - p_B)/(rho * g) + (H_C) - (H_B) = -1 * v_C^2/(2 * g) * (f_B C * L_B_C / D_B C + KL_B C)$ {Bernoulis} {Junction C to Dr. House 1} $Q_C_d r1 = (pi * D_C_d r1^2/4) * v_d r1$ Re_C_dr1 = (4*abs(Q_C_dr1))/(pi*nu*D_C_dr1) {Holland Eqn} $f_C_dr1 = f_val(Re_C_dr1)$ $(p_d - d + 2 - p_d)/(rho * g) + (H_d + 1 + \sinh + \sinh + (H_c) = -1 * v_d + 1 * 2 / (2 * g) * (f_c - d + 1 * L_c - d + 1 * (L_c - d + 1 + K) - c_d + 1 * 1 * 2)$ p_dr1 = 0 [Pa] {Junction C to D} $Q_C_D = (pi * D_C_D^2/4) * v_D$ Re_C_D = (4*abs(Q_C_D))/(pi*nu*D_C_D) {Holland Eqn} $f_C_D = f_S = f_C$ = $f_C = f_C$ $(p_b - p_c)/(rho * g) + (H_p) - (H_c) = -1 * v_p^2/(2 * g) * (f_c - p * L_c - p/D_c - p + KL_c - p)$ {Bernoulis} {Junction D to guest3} Q_D_guest3 = (pi * D_D_guest3^2/4) * v_guest3 Re_D_guest3 = (4*abs(Q_D_guest3))/(pi*nu*D_D_guest3) {Holland Eqn}

 $(p_guest1 - p_A)/(rho * g) + (H_guest1 + sinkHeightt) - (H_A) = -1 * v_guest1^2/(2 * g) * (f_A_guest1 * L_A_guest1 / D_A_guest1 + KL_A_guest1 + (f_A_guest1 + h_A_guest1) - (f_A_guest1)$

f_D_guest3 = f_val(Re_D_guest3) $(p_guest3 - p_D)/(rho * g) + (H_guest3 + sinkHeight) - (H_D) = -1 * v_guest3^2 / (2 * g) * (f_D_guest3 * L_D_guest3 + E_D_guest3 + KL_D_guest3 + K_D_guest3 + K_$ KV_D_guest3) {Bernoulis} p_guest3 = 0 [Pa]

{Junction D to E} $Q_{D}E = (pi * D_{D}E^2/4) * v_{E}$ $Re_D_E = (4 * abs(Q_D_E))/(pi * nu * D_D_E)$ {Holland Eqn} $f_D E = f_Nal(Re_D E)$ $(p_E - p_D)/(rho * g) + (H_E) - (H_D) = -1 * v_E^2/(2 * g) * (f_D_E * L_D_E / D_E + KL_D_E)$ {Bernoulis}

{Junction E to dr2} $Q_E_dr^2 = (pi * D_E_dr^2/2/4) * v_dr^2$ Re_E_dr2 = (4*abs(Q_E_dr2))/(pi*nu*D_E_dr2) {Holland Eqn}

KV_A_guest1) {Bernoulis} p_guest1 = 0 [Pa] {Junction A to B}

 $f_A_B = f_value(Re_A_B)$

 $Q_A_B = (pi * D_A_B^2/4) * v_B$

{Junction B to Guest House 2}

f_B_guest2 = f_val(Re_B_guest2)

 $Re_A_B = (4 * abs(Q_A_B)) / (pi * nu * D_A_B)$ {Holland Eqn}

 Q_B_g uest2 = (pi * D_B_g uest2^2/4) * v_guest2

Re_B_guest2 = (4*abs(Q_B_guest2))/(pi*nu*D_B_guest2) {Holland Eqn}

 $(p_B - p_A)/(rho * g) + (H_B) - (H_A) = -1 * v_B^2/(2 * g) * (f_A_B * L_A_B/D_A_B + KL_A_B)$ {Bernoulis}

 $Q_E_F = (pi * D_E_F^2/4) * v_F$ Re_E_F = (4*abs(Q_E_F))/(pi*nu*D_E_F) {Holland Eqn} $f_E_F = f_value(Re_E_F)$ $(p_F - p_E)/(rho * g) + (H_F) - (H_E) = -1 * v_F^2/(2 * g) * (f_E - f * L_E - f/D_E - f + KL_E - f)$ {Bernoulis} {Junction F to dr5} $Q_F_d - dr5 = (pi * D_F_d - dr5^2/4) * v_d - dr5$ Re_F_dr5 = (4*abs(Q_F_dr5))/(pi*nu*D_F_dr5) {Holland Eqn} f_F_dr5 = f_val(Re_F_dr5) $(p_d - d r 5 - p_F)/(r h o * g) + (H_d r 5 + sinh H \cdot e)$ $(H_f) = -1 * v_d r 5^2/(2 * g) * (f_f - d r 5 * L_f - d r 5 + KL_f - d r 5 + K V_f - d r 5)$ {Bernoulis} p_dr5 = 0 [Pa] {Junction F to G} $Q_F_G = (pi * D_F_G^2/4) * v_G$ $R = F_G = (4 * abs(Q_F_G)) / (pi * nu * D_F_G)$ {Holland Eqn} f F $G = f$ val(Re F G) (p_G - p_F)/(rho * g) + (H_G) - (H_F) = -1 * v_G^2/(2*g) * (f_F_G * L_F_G/D_F_G + KL_F_G) {Bernoulis} {Junction G to dr4} $Q_G_d r4 = (pi * D_G_d r4^2/4) * v_d r4$ Re_G_dr4 = (4*abs(Q_G_dr4))/(pi*nu*D_G_dr4) {Holland Eqn} $f_G_dr4 = f_val(Re_G_dr4)$ $(p_d + 2 - 6)/(rho * g) + (H_d + 4 - 6)$ + sinkHeight) - $(H_d - 6) = -1 * v_d + (h_d + 2)$ + $(f_d - d + 4)$ + $(c_d + 4)$ + $c_d + 4 + 4$ + $c_d + 4 + 4$ + $c_d + 4$ + $c_d + 4$ p_dr4 = 0 [Pa] {Junction G to H} Q_G_H = (pi * D_G_H^2/4) * v_H Re_G_H = (4*abs(Q_G_H))/(pi*nu*D_G_H) {Holland Eqn} $f_G_H = f_value(Re_G_H)$ $(p_H - - p_G)/(rho * g) + (H_H) - (H_G) = -1 * v_H^2/(2 * g) * (f_G_H * L_G_H / D_G_H + KL_G_H)$ {Bernoulis} {Junction H to dr3} $Q_H/dr3 = (pi * D_H/dr3^2/4) * v_d$ Re_H_dr3 = (4*abs(Q_H_dr3))/(pi*nu*D_H_dr3) {Holland Eqn} f H dr3 = f val(Re H dr3) (p_dr3 - p_H)/(rho * g) + (H_dr3 + sinkHeight) - (H_H) = -1 * v_dr3^2/(2*g) * (f_H_dr3 * L_H_dr3/D_H_dr3 + KL_H_dr3 + KV_H_dr3) {Bernoulis} p_dr3 = 0 [Pa] {Junction H to I} Q_H_I = (pi * D_H_I^2/4) * v_I Re_H_I = (4*abs(Q_H_I))/(pi*nu*D_H_I) {Holland Eqn} $f_H_l = f_Nal(Re_H_l)$ $(p_1 - p_1)/(rho * g) + (H_1) - (H_1) = -1 * v_1/2/(2 * g) * (f_1 - 1 * L_1 - 1/(D_1 - 1) + KL_1 - 1)$ {Bernoulis}

 $(p_d - d r^2 - p_E)/(r h o * g) + (H_d r^2 + \sin k H e i g h t) - (H_E) = -1 * v_d r^2 / 2 / (2 * g) * (f_E_d r^2 + L_E_d r^2 / D_E_d r^2 + K L_E_d r^2 + K L_E_d r^2 + K L_E_d r^2)$ {Bernoulis}

{Junction I to laundry} Q_I_laundry = (pi * D_I_laundry^2/4) * v_laundry Re_I_laundry = (4*abs(Q_I_laundry))/(pi*nu*D_I_laundry) {Holland Eqn} f_I_laundry = f_val(Re_I_laundry)

 $f_E_dr2 = f_val(Re_E_dr2)$

p_dr2 = 0 [Pa] {Junction E to F}

D_J_old_pastor = minorPipe L_J_old_pastor = 25 [m] + 10 [m] + sinkLength K L J old pastor = building Q_J_old_pastor = (pi * D_J_old_pastor^2/4) * v_old_pastor Re_J_old_pastor = (4*abs(Q_J_old_pastor))/(pi*nu*D_J_old_pastor) {Holland Eqn} f_J_old_pastor = f_val(Re_J_old_pastor) (p_old_pastor - p_J)/(rho * g) + (H_old_pastor + sinkHeight) - (H_J) = -1 * v_old_pastor^2/(2*g) * (f_J_old_pastor * L_J_old_pastor/D_J_old_pastor + K_L_J_old_pastor + K_V_J_old_pastor) {Bernoulis} p_old_pastor = 0 [Pa] {Junction J to new_pastor} D_J_new_pastor = minorPipe L_J_new_pastor = 15 [m] + sinkLength K_L_J_new_pastor = building Q_J_new_pastor = (pi * D_J_new_pastor^2/4) * v_new_pastor Re_J_new_pastor = (4*abs(Q_J_new_pastor))/(pi*nu*D_J_new_pastor) {Holland Eqn} f_J_new_pastor = f_val(Re_J_new_pastor) $(p_new_pastor - p_J)/(rho * g) + (H_new_pastor + sinkHeight) - (H_J) = -1 * v_new_pastor^2/(2*g) * (f_J_new_pastor * f)$ L_J_new_pastor/D_J_new_pastor + K_L_J_new_pastor + K_V_J_new_pastor) {Bernoulis} p_new_pastor = 0 [Pa]

p_spigot = 0 [Pa] {Tank to Junction J} D_tank_J = mainPipe L_{L} tank_J = 40 K_L_tank_J = elbow * 2 {to go under ground from above the tank} $Q_{\text{tank_J}} = (pi * D_{\text{tank_J}}^2 / 2 / 4) * v_{\text{t}}^2$ Re_tank_J = (4*abs(Q_tank_J))/(pi*nu*D_tank_J) {Holland Eqn} f_tank_J = f_val(Re_tank_J) {Bernouli} $(p_J-p_tank)/(rho*g)$ +(v_J^2-v_tank^2) / (2*g) + (H_J) - (H_tank + extraTankHeight) = -1 * v_J^2/(2*g) * (f_tank_J*L_tank_J/D_tank_J + K_L_tank_J) p_tank = 0 [Pa] {guage pressure} v_tank = 0 [m/s]

 $(p_laundry - p_l)/(rho * g) + (H_laundry + sinkHeight) - (H_l) = -1 * v_laundry^2/(2 * g) * (f_laundry * L_laundry/D_laundry + KL_laundry + (f_laundry + g_laundry + g_laundry + (f_laundry + g_laundry + g_laundry$ KV | laundry) {Bernoulis} p_laundry = 0 [Pa]

 $(p_spigot - p_l)/(rho * g) + (H_spigot + sinkHeight) - (H_l) = -1 * v_spigot^2/(2 * g) * (f_l_spigot * L_l_spigot/D_l_spigot + KL_l_spigot +$

{Junction I to spigot}

f_I_spigot = f_val(Re_I_spigot)

KV_I_spigot) {Bernoulis}

{Junction J to old_pastor}

{Junction J to old_old_pastor} D_J_old_old_pastor = minorPipe

L_J_old_old_pastor = 30 [m] + 15 [m] + sinkLength K_L_J_old_old_pastor = building + elbow

f_J_old_old_pastor = f_val(Re_J_old_old_pastor)

Q_J_old_old_pastor = (pi * D_J_old_old_pastor^2/4) * v_old_old_pastor

Re_J_old_old_pastor = (4*abs(Q_J_old_old_pastor))/(pi*nu*D_J_old_old_pastor) {Holland Eqn}

Q_I_spigot = (pi * D_I_spigot^2/4) * v_spigot

Re_I_spigot = (4*abs(Q_I_spigot))/(pi*nu*D_I_spigot) {Holland Eqn}

43

 $(p_old_pastor - p_J)/(rho * g) + (H_old_od_pastor + sinkHeight) - (H_J) = -1 * v_old_old_pastor^2/(2 * g) * (f_J_old_pastor * g)$ L_J_old_old_pastor/D_J_old_old_pastor + K_L_J_old_old_pastor + K_V_J_old_old_pastor) {Bernoulis} p_old_old_pastor = 0 [Pa]

{Easy to Read}

flow_conv = 60000 [s*L/(m^3*min)]

{Flow Balance}

 $Q_{\text{tank_A}} = Q_{\text{t}} - B + Q_{\text{t}} - A_{\text{t}}$ $Q_A_B = Q_B_C + Q_B_S$ $Q_B_C = Q_C_D + Q_C_d + 1$ $Q_C_D = Q_D_E + Q_D$ guest3 $Q_D_E = Q_E_F + Q_E_d$ r2 $Q_E_F = Q_F_G + Q_F_d$ r5 $Q_F_G = Q_G + Q_G_H + Q_G_H$ Q_G_H = Q_H_dr3 + Q_H_I Q_H_I = Q_I_laundry + Q_I_spigot Q_tank_J = Q_J_old_pastor + Q_J_new_pastor + Q_J_old_old_pastor

{Easy to Read}

flow_conv = 60000 Q_tank_A_lpm = Q_tank_A * flow_conv Q_A_guest1_lpm = Q_A_guest1 * flow_conv Q_B_guest2_lpm = Q_B_guest2 * flow_conv $Q_C dr1$ _lpm = $Q_C dr1$ * flow_conv Q_D_guest3_lpm = Q_D_guest3 * flow_conv Q_E_dr2_lpm = Q_E_dr2 * flow_conv Q_F_dr5_lpm = Q_F_dr5 * flow_conv Q_G_drd -lpm = Q_G_drd -dr4 $*$ flow_conv $Q_H_dr^3_lpm = Q_H_dr^3 * flow_c$ Q_I_spigot_lpm = Q_I_spigot * flow_conv Q_I_laundry_lpm = Q_I_laundry * flow_conv Q_tank_J_lpm = Q_tank_J * flow_conv Q_J_old_pastor_lpm = Q_J_old_pastor * flow_conv Q_J_new_pastor_lpm = Q_J_new_pastor * flow_conv Q_J_old_old_pastor_lpm = Q_J_old_old_pastor * flow_conv

Appendix E4 - EES Code for School Zone:

function f_val(Re) IF (Re < 2300) THEN f _{_val} = $64/Re$ ELSE $f_{val} = (-1.8 * LOG10(6.9/Re))^(-2)$ ENDIF END

{CONVERSIONS and CONSTANTS} 1 / fpm = ipf * 2.54 [cm/in] * .01 [m/cm] ipf = 12 [in/ft] $\text{im} = \text{ipf*fpm}$ rho = 1000 [kg/m^3] $g = 9.81$ [m/s^2] nu = 1.31 [m^2/s] * 10^(-6) sinkHeight = 1 sinkLength = 2 extraTankHeight = 5 [ft] / fpm

{-----------RELEVANT HEIGHTS--------------}

H_well=0 {well} H_tank=(110[ft])/fpm {32kL cement tank}

H_nursing_dorm = H_well + 40[ft]/fpm {nursing house dorms} H_nursing_kitchen = H_nursing_dorm {nursing house kitchen} H_A = H_nursing_dorm + 2 [m]

mainPipe = 2 [in] / ipm minorPipe = 0.75 [in] / ipm open = 15 {sink at open still has losses} $\frac{1}{\text{closed}} = 10^{1/19}$ elbow = 1.5 building = elbow * 10

{Habkuk's Hut} K_V_A_nursing_dorm= closed K_V_A_nursing_kitchen = open

{Tank to Junction A} D_tank_A = mainPipe L_tank_A = $30 + 50$ K L tank $A =$ elbow Q_tank_A = (pi * D_tank_A^2/4) * v_A Re_tank_A = (4*abs(Q_tank_A))/(pi*nu*D_tank_A) {Holland Eqn} $f_{\text{rank_A = f_{val}(Re_{\text{rank_A}})}}$ {Bernouli} $(p_A-p_tank)/(rho*g) + (v_A^2-v_tank^2) / (2*g) + (H_A) - (H_tank + extraTankHeight) = -1 * v_A^2/(2*g) * (f_tank_A*L_tank_A/D_tank_A +$ K_L_tank_A) p_tank = 0 [Pa] {guage pressure}

45

v_tank = 0 [m/s]

{Junction A to nursing_dorm} D_A_nursing_dorm = minorPipe L_A_nursing_dorm = 35 + 10 + sinkLength K_L_A_nursing_dorm = 15 + elbow + building Q_A_nursing_dorm = (pi * D_A_nursing_dorm^2/4) * v_nursing_dorm Re_A_nursing_dorm = (4*abs(Q_A_nursing_dorm))/(pi*nu*D_A_nursing_dorm) {Holland Eqn} $f_A_nursing_dorm = f_val(Re_A_nursing_dorm)$ (p_nursing_dorm - p_A)/(rho * g) + (H_nursing_dorm + sinkHeight) - (H_A) = -1 * v_nursing_dorm^2/(2*g) * (f_A_nursing_dorm * L_A_nursing_dorm/D_A_nursing_dorm + K_L_A_nursing_dorm + K_V_A_nursing_dorm) {Bernoulis} p_nursing_dorm = 0 [Pa]

{Junction A to nursing_kitchen} D_A_nursing_kitchen = minorPipe L_A_nursing_kitchen = 35 + 10 + sinkLength K_L_A_nursing_kitchen = 15 + elbow + building Q_A_nursing_kitchen = (pi * D_A_nursing_kitchen^2/4) * v_nursing_kitchen Re_A_nursing_kitchen = (4*abs(Q_A_nursing_kitchen))/(pi*nu*D_A_nursing_kitchen) {Holland Eqn} f_A_nursing_kitchen = f_val(Re_A_nursing_kitchen) (p_nursing_kitchen - p_A)/(rho * g) + (H_nursing_kitchen + sinkHeight) - (H_A) = -1 * v_nursing_kitchen^2/(2*g) * (f_A_nursing_kitchen * L_A_nursing_kitchen/D_A_nursing_kitchen + K_L_A_nursing_kitchen + K_V_A_nursing_kitchen) {Bernoulis} p_nursing_kitchen = 0 [Pa]

{Flow Balance} Q_tank_A = Q_A_nursing_dorm + Q_A_nursing_kitchen

{Easy to Read} flow_conv = 60000 Q_tank_A_lpm = Q_tank_A * flow_conv Q_A_nursing_dorm_lpm = Q_A_nursing_dorm * flow_conv Q_A_nursing_kitchen_lpm = Q_A_nursing_kitchen * flow_conv